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Local distributions and rate fluctuations in a unified scaling law for earthquakes
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~Received 28 October 2002; published 9 September 2003!

A recently proposed unified scaling law for interoccurrence times of earthquakes is analyzed, both theoreti-
cally and with data from Southern California. We decompose the corresponding probability density into
local-instantaneous distributions, which scale with the rate of earthquake occurrence. The fluctuations of the
rate, characterizing the nonstationarity of the process, show a double power-law distribution and are funda-
mental to determine the overall behavior, described by a double power law as well.
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Earthquakes constitute an extremely complex phen
enon in nature, with the deformation and sudden rupture
some parts of the Earth’s crust driven by convective mot
in the mantle, and the radiation of energy in the form
seismic waves. Only a part of this complexity is collected
earthquake catalogs, where magnitude, epicenter spatia
ordinates, and starting time of events, among other meas
ments, are recorded. This information, which converts
phenomenon in a spatiotemporal point process marked
the magnitude, nevertheless reveals some important s
invariant properties.

First, the Gutenberg-Richter law states that the numbe
earthquakes in some region with magnitude larger than s
threshold value decreases exponentially with the thresh
Taking into account that~to a first approximation! the re-
leased energy increases exponentially with the magnitu
the probability distribution of the released energy turns ou
be a power law, precisely the hallmark of scale-free beha
@1–3#. Second, the introduction of fractal geometry soon
to the recognition that the spatial distribution of epicent
~or hypocenters! draws a fractal object over the Earth’s su
face@2,3#. And third, the Omori law, proposed more than 1
years ago, accounts for the number of events~called after-
shocks! that follow a large shock after some time. This num
ber is another power law, with exponent close to minus o
@4#.

This lack of characteristic scales suggests that the cru
in a critical state, like the well-known critical points studie
in equilibrium systems, but without external adjustments
control parameters. Therefore, one may talk about a s
organized critical~SOC! state for the seismic system@5#.
This concept has important implications for the issue
earthquake prediction; indeed, a critical crust implies tha
fracture process may or may not develop to provoke a la
earthquake depending on minor microscopic details that
intrinsically out of control@6#.

An important quantity characterizing earthquake occ
rence is the time interval between successive earthqua
This time ~that can be referred to as interoccurrence tim
recurrence time, or waiting time! although related to the
Omori law, has a distribution that is not clearly known.
fact, all the possibilities have been proposed, from perio
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behavior for large earthquakes to totally random occurren
The most extended view is to consider the existence of
separated processes, one for the main shocks, which sh
occur randomly following a Poisson distribution, and anoth
process for the aftershocks; but this should not hold for la
events, for which clustering has been reported@7#. In general,
the usual studies proceed by fixing a limited area of obs
vation where aftershocks are skillfully identified and r
moved from data. On the opposite side, other works conc
trate only on series of aftershocks.

Bak et al. @8# have followed an alternative approac
which is to consider the problem in its complete spatiote
poral complexity. They divide the area of South Californ
into regions of sizeL degrees in the north-south~meridian!
direction andL degrees as well in the east-west~parallel!
direction @9,10#. Only earthquakes with magnitudem larger
than a threshold valuemc are taken into account~but no
other events are eliminated, all shocks are equally treat!.
For eachL3L region the time intervalt between consecu
tive earthquakes is obtained for the period from 1984 to 20
as t i5t i2t i 21, where t i is the time coordinate of thei th
earthquake within the region withm.mc . The probability
density for this interoccurrence time,D(t,mc ,L), is com-
puted and the results giveD(t,mc ,L)}1/t for short times
and a faster decay for long times, with a dependence als
L andmc .

Remarkably, when a scaling analysis is performed, all
distribution functions corresponding to different values ofL
andmc collapse into a single curve if the axes are resca
by Sb/Ldf , with df.1.2, b.1, andS[10mc ~related to the
energy roughly asS}E2/3). In mathematical words,

D~t,mc ,L !.
Ldf

Sb
FS Ldf

Sb
t D 5

1

t
GS Ldf

Sb
t D ; ~1!

this scaling law constitutes the Bak-Christensen-Dan
Scanlon~BCDS! proposal@8#. For short times, the function
G shows a slow variation not affecting the power-law (1/t)
behavior; for long times a fast decay is obtained, wh
could be consistent with an exponential distribution a
therefore with a Poisson process, according to Ref.@8#.
@From now on, to simplify the notation, we will omit th
dependence ofD on L andmc and just writeD(t).#
©2003 The American Physical Society02-1
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This result is relevant for several reasons, among them
shows scaling in the spatiotemporal occurrence of ea
quakes, a key element to consider earthquakes as a cr
phenomenon. Second, it is the first law that relates inte
currence times, the Gutenberg-Richter law~factor 1/Sb), and
the fractal dimension of the spatial distribution of even
(df), allowing a unified description. Third, the law is vali
for all earthquakes, no matter their size or location, and
matter also if they are considered as aftershocks, foresho
or main shocks. Fourth, the power law tells us that imme
ately after any earthquake there is a high probability of
turn, and this probability decreases in time with no char
teristic scale up toSb/Ldf ; that is, there is a correlation tim
that depends on the region size and magnitude under co
eration, and therefore for any event one may find cluster
aftershocks in all time scales up to an appropriate len
scaleL.

The importance of this law deserves further study. H
we are interested in a general understanding of the BC
law and its origins. We will analyze the same catalogs as B
et al. @11# and will show that the fast decay for long times
not exponential, but another power law.D(t) is related to its
local and instant components and to the rate of earthqu
occurrencer; this quantity, which counts the number o
events per unit time in a given region, displays large fluct
tions across several orders of magnitude, doubly power-
distributed. This is in contrast to simple SOC models.

Let us pay more attention to the obtaining of the distrib
tion D(t) by Bak et al. As we have mentioned, this distr
bution accounts for the time difference between succes
earthquakes with magnitude larger thanmc in every L3L
region. Times from different regions are counted togethe
D(t). But the total number of earthquakes differs from r
gion to region~as it is well known, due to the fractal spati
distribution!, with a high variability@12#. Therefore, the loca
distributionsDxy(t) accounting for the time difference in
given L3L region ~of spatial coordinatesx,y) are clearly
different. This means thatD(t) is a mixed distribution con-
structed from all the differentDxy(t).

But further, looking into a singleL3L region one can see
a high variability in the rate along timet @12# ~see Fig. 1!. In
fact, the rate typically exhibits a quite stable behavior
some periods of time, with small fluctuations, but for oth
periods develops sudden burst of activity where its va
increases sharply and then decreases to become stati
again, or not. This intermittency, of course related to
occurrence of larger earthquakes in the region, recalls
punctuated-equilibrium behavior of SOC systems@5,13#, but
note however that the variable that displays punctuated e
librium is not only the signalm(t), but also the rate.

Again, the local distributionDxy(t) is obtained as a mix-
ture of distributions, the densities of interoccurrence times
a given region at a certain timet, Dxyt(t). From this we can
write

D~t!} (
;x,y

E Dxyt~t!r ~x,y,t !dt, ~2!

where the rater (x,y,t) is the number of earthquakes per un
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time in the region (x,y) at timet. ~All functions here depend
as well onL andmc , though the dependence is not explicit
written.! The rater in the integral acts as a weight factor, du
to the fact that the higher the rate in a given region and tim
the larger the number of earthquakes that are produced
contribute to the distribution.

We now make the hypothesis that the dependence
space and time enters into the distributionDxyt only through
the rater (x,y,t). That is, we assume that different regions
different times but with the same rate of occurrence will ha
the same distribution of interoccurrence times~if the rate is
stationary!, i.e.,

Dxyt~t!5D„tur ~x,y,t !…, ~3!

which is a conditional density. Therefore,

D~t!5E
0

`

D~tur !
rr~r !

m
dr, ~4!

with r(r ) being the probability density of the rate andm
5^r & just a normalization factor.

SinceDxyt(t) is an instantaneous quantity~and we have a
single realization of the process!, it would be impossible to
measure if we did not have the periods of stationarity inr.
Figure 2 shows these distributions for several periods of
tionarity and several regions of differentL and spatial coor-
dinates. Indeed, the distributionsDxyt do not only depend
exclusively onr, but they scale with it, i.e.,

D~tur !.r f ~r t! ~5!

~a behavior that could have been derived by dimensio
analysis!, with the scaling functionf being a power law for
short times and presenting a fast decay for large ones. In
the distributions can be fit by a function of the type

FIG. 1. Rate of earthquake occurrence as a function of time
the L510° region of South California, formc52 with Dt52
months and formc53 with Dt54 months. The vertical log scale
should not make one under-rate the large variations inr. Note, for
example, the almost constant rate in 1991 in contrast to 1992.
2-2
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f ~u!5C
1

u12g
e2(u/u0)d

, ~6!

with g50.6360.05, d50.9260.05, u051.5060.15, and
C50.560.1. We could approximate thenD(tur ) to a
gamma distribution (d51), which ensures that the large
scale cutoff is close to exponential@14#.

Next step is to look at the distribution of ratesr(r ). To be
precise,r (x,y,t) is defined by counting the number of even
above the thresholdmc into theL3L region of coordinates
x,y during a time interval (t,t1Dt) and dividing the result
by the duration of the interval,Dt. The corresponding prob
ability density, which is calculated from 1984 to 2001 on
for the regions in which there is earthquake activity, depe
on L and Dt ~as well as onmc) and is shown in Fig. 3. In
fact, the value ofDt should be small enough to ensurer .
constant~but large enough for statistical significance!, but
there is no characteristic scale for constantr and therefore no
typical value forDt. Also, the two-power-law behavior i
noteworthy in the figure, one power law for low rates a
another one for high rates, which can be modeled as

r~r !5C8u
~ur !a21

@11~ur !c# (a1b)/c
, ~7!

which gives r}1/r 12a for r !u21 and r}1/r 11b for r
@u21. We obtain exponents forr about 1.060.1 and 2.2
60.1, soa.0 and b.1.2. Parameterc just controls the
sharpness of the transition from one regime to the other
u21 is a scaling parameter. The double power law impl
that there is no characteristic occurrence rate up to the v
u21, but for values in the tail of the distribution there is al

FIG. 2. Local distributions of interoccurrence times for seve
stationary periods and different regions, after scaling by the r
The regions are labeled fromx,y50 to 10°/L21 from west to east
~x! and from south to north (y). The fit is explained in the text
deviations at small times are due to short-scale disturbances o
stationarity. As in Baket al.’s paper, times smaller than 38 s are n
considered.
03510
s

d
s
ue

scale invariance. This could be understood as criticality,
only in the time domain as we knew, but also in the ra
domain.

Additionally, it is easy to obtain the form of the scalin
factoru21. The mean ratem5^r & is given by the total num-
ber of events divided by the total time and by the number
regions with activity; the former, because of the Gutenbe
Richter law, scales as 1/Sb and the latter as 1/Ldf , which
gives^r &}Ldf /Sb. Since the distribution turns out to scale
the same way,u21}Ldf /Sb. For the scaling plot in Fig. 3 we
have usedb50.95 @8# and df51.6, which was obtained
from a box-counting method for spatial distributions of ep
centers withm>2.

Now that we know the form of the functionsD(tur ) and
r(r ) we can answer the question about how the large va
tions of the rate influence the distributionD(t), just by in-
tegrating Eq.~4! with the use of Eqs.~5!–~7!. The limit t
→` is obtained directly with the use of Laplace’s method

l
e.

he

FIG. 3. Scaled distributions of rates, for severalDt, L, andmc ,
usingdf51.6 andb50.95. Two power laws with exponents 1 an
2.2 fit the data.

FIG. 4. Scaled distributions of interoccurrence times,D(t), for
different L and mc with df51.6 andb50.95; t>38 s again. The
straight lines illustrate the double power-law behavior, with exp
nents 0.9 and 2.2.
2-3
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evaluate asymptotic integrals@15#. We get

D~t!}
ua

m
tg21E

0

`

r a1ge2(tr /u0)d
dr}

ua

dmt21a
; ~8!

this is in fact independent of the tail ofr(r ), it does not
matter if it is a power law or not. But there is another limit
be studied. Indeed, the behavior of the integral depends
the relation betweent andu. We have just calculated wha
happens fort@u; the opposite case,t!u, can be obtained
for long times if we first perform the limitu→` and then
apply Laplace’s method fort. So,r(r );C8u2b/r 11b, and
the integral gives

D~t!}
tg21

mub E0

`

r g2be2(tr /u0)d
dr}

1

dmubt22b
. ~9!

Since m is proportional tou21 the last results can b
summarized as follows:

D~t!}
u12b

t22b
for t!u

and

D~t!}
u11a

t21a
for t@u, ~10!
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and they are displayed in Fig. 4, where the two exponents
t turn out to be 0.960.1 and 2.260.1, yieldingb.1.1 and
a.0.2 in good agreement with our calculations. Both resu
for D(t) do not depend on the form given by Eq.~7! for
r(r ) as long as it exhibits the two-power-law behavior.
addition, the exponentg of D(tur ) does not affect the value
of the two exponents ofD(t). Notice that the scaling facto
for t in D(t) is u, that is, the inverse of the scaling facto
for r, sou}Sb/Ldf .

Finally, we would like to point out thatD(t) is described
by the same function~including the same values of the ex
ponents! than the one that characterizes the trapping ti
distribution in a rice-pile model,~see Fig. 1 of Ref.@16#!.
Also the coincidence between our Fig. 3 and Fig. 3 in R
@17# is notable, although no probability density is measur
there. Accordingly, the exponents about 0.9 and 2.2 sho
be quite universal.

In conclusion, we have performed a ‘‘microscopic’’ anal
sis of the BCDS law for earthquakes, which provides a w
to deal with the heterogeneity and nonstationarity of seis
occurrence.

The author is profoundly indebted to Per Bak, wh
opened so many paths in science, not only for his scien
guide, but for many other things. Regarding this paper,
also thanks M. Bogun˜á, K. Christensen, and Ramo´n y Cajal
program. A fruitful part of this work was accomplished
l’Abadia de Burch~Pallars Sobira`, Lleida!.
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